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A B S T R A C T

The rapid development of multi-view 3D human pose estimation (HPE) is attributed to the maturation of
monocular 2D HPE and the geometry of 3D reconstruction. However, 2D detection outliers in occluded views
due to neglect of view consistency, and 3D implausible poses due to lack of pose coherence, remain challenges.
To solve this, we introduce a Multi-View Fusion module to refine 2D results by establishing view correlations.
Then, Holistic Triangulation is proposed to infer the whole pose as an entirety, and anatomy prior is injected
to maintain the pose coherence and improve the plausibility. Anatomy prior is extracted by PCA whose input
is skeletal structure features, which can factor out global context and joint-by-joint relationship from abstract
to concrete. Benefiting from the closed-form solution, the whole framework is trained end-to-end. Our method
outperforms the state of the art in both precision and plausibility which is assessed by a new metric.
. Introduction

3D human pose estimation (HPE) is a significant computer vision
roblem with numerical applications such as human behavior analysis,
-reality, etc (Wang et al., 2021). To estimate 3D pose, there are

wo sensor setting streams: monocular (Martinez et al., 2017; Pavlakos
t al., 2017a; Xu and Takano, 2021) and multi-view (Gavrila and Davis,
996; Burenius et al., 2013). In this paper, we focus on multi-view 3D
PE, for its capability to estimate absolute 3D position without inherent
epth ambiguities which monocular suffers.

One of the most common frameworks (Iskakov et al., 2019; Dong
t al., 2019; Remelli et al., 2020; Kocabas et al., 2019) of multi-
iew methods follows a two-step procedure: (1) detect 2D keypoints of
uman skeleton at each view separately, (2) apply Linear Triangulation
LT) which utilizes epipolar geometry (Hartley and Zisserman, 2003) to
econstruct 3D pose. The framework is elegant because 2D detectors
an be off-the-shelf and closed-form solution LT enables end-to-end
raining but without any learning cost. However, there are still two
ain drawbacks: (1) 2D keypoints detected in each view are indepen-
ent of each other, and will be hampered by the occlusion and overlap
ue to lack of view consistency. (2) LT in step 2 calculates each 3D
oint individually, neglecting the global context of whole pose. Hence,
t is unable to identify the 3D outliers, which usually causes implausible
oses.

To solve the first problem, Multi-View Fusion (MVF) module is
roposed to refine the 2D keypoint by establishing view correlations.
e argue that multiple image points projected from a 3D point share

∗ Corresponding author.
E-mail address: zhaoxu@sjtu.edu.cn (X. Zhao).

similar representations. In another word, two most similar points in
different views are mostly intersected to one 3D point. According to this
assumption, MVF utilizes keypoints detected in source views to gener-
ate pseudo heatmaps which represents the probability distribution the
keypoint localized in reference view through feature matching. These
pseudo heatmaps can guide the reference keypoints to perceive other
views. There are also some works aimed to enhance view consistency
through feature fusion: the fully-connected CrossView (Qiu et al., 2019)
and the epipolar sample fusion in Epipolar Transformer (He et al.,
2020). But, MVF primarily emphasizes heatmap generation and fusion
which is more intuitive and the utilization of the detected keypoint
location makes calculation more efficient.

Then to boost the plausibility of 3D poses, Holistic Triangulation
(HT) with anatomy constraints is proposed, which enables all 3D key-
points to gain access to pose coherence through 2D–3D phase. Firstly,
we modify the formulation of objective function so that all joints can
be inferred as an entirety. Then, to model the joints linear dependence
in the objective function, a PCA reconstruction term is injected. By
doing so, joints are coupled in an abstract PCA subspace spanned by the
principle components, which contains the global context of whole pose.
Human anatomy prior therefore is implicitly introduced. Furthermore,
to make the prior more explicit, PCA feature is extended from keypoint
position to skeletal structure feature by applying kinematic chain space
(KCS) (Wandt et al., 2018). Benefiting from the linear property of PCA,
HT is still closed-optimized and differentiable, which maintains the
elegance of LT.
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Fig. 1. The framework of our approach. 2D keypoint detector achieves 2D poses from multi-view RGB images. MVF refines the 2D results considering the views consistency. And
HT generates the 3D pose under the constraints of the anatomy coherence.
a
p
c
m
p
e
b
d
l
o
e
u
(
d
i
R
a
b
g
n
P
p
H
r

3

a
v
b
(
T
o

𝐼

Consequently, we integrate the 2D detector, MVF and HT into one
end-to-end framework and introduce reprojected loss, bone length loss
and joint angle loss to promote the view consistency and anatomy
coherence during training procedure. In addition, a plausible-pose eval-
uation metric is proposed to fill in the gap of pose plausibility criterion.

Without bells and whistles, MVF-HT method exhibits competitive
performance with state-of-the-art techniques, surpassing them in both
precision, plausibility and generalization. Moreover, the anatomy prior
extracted by PCA is explored through visualization. The main contribu-
tions are summarized below:

• We propose an efficient and intuitive MVF module to enhance
the view consistency in 2D keypoint estimation. MVF refines 2D
keypoint 𝑝 through perceiving the possible position the same
keypoints in other views may localize in the view of 𝑝.

• To the best of our knowledge, this is the first work that re-
constructs the entire 3D pose at once using the triangulation
framework. By integrating pose prior, 2D observations, and ge-
ometric constraints within the triangulation process and solving
them in a closed form, the plausibility of the pose estimation is
significantly improved.

• Our framework can be trained end-to-end but without any learn-
ing cost in 2D–3D phase because of the closed-form solution of
HT. And a plausible-pose evaluation metric is proposed to fill in
the gap of pose plausibility criterion.

. Related work

Multi-View 3D HPE. The current multi-view 3D HPE methods can
be divided into two categories according to the aforementioned two
steps. The first category focuses on enhancing the 2D pose estimator.
In Qiu et al. (2019), He et al. (2020) and Remelli et al. (2020), 2D
detectors are enabled to perceive 3D information in the process of 2D
detection, where (Qiu et al., 2019; He et al., 2020) use the epipolar
constraints to fuse features of corresponding views while (Remelli et al.,
2020) directly generate a canonical representation using convolution
network. Our MVF is similar to Qiu et al. (2019) and He et al. (2020),
but uses the results of 2D detector to sample joint feature and generate
the corresponding pseudo heatmap to provide the assistant for the
reference view.

The other category focuses on the second procedure which lifts 2D
keypoints to 3D poses. The approach can be summarized as learning-
based and optimization-based. In Iskakov et al. (2019), Dong et al.
(2019), Remelli et al. (2020) and Kocabas et al. (2019), based on
the camera projection geometry and multi-view 2D points, triangula-
tion (Hartley and Zisserman, 2003) is used to obtain 3D results by
SVD or Least-Square method. In Remelli et al. (2020), a lightweight
DLT method is proposed and exceeds the SVD in time cost. In Kad-
khodamohammadi and Padoy (2021), triangulation is replaced with a
convolutional network to learn the lifting process. In Burenius et al.
2

(2013), Pavlakos et al. (2017b) and Qiu et al. (2019), the human skele-
ton is modeled as 3D-PSM to establish the potential function combining
the 2D observation and skeletal bone length constraints. 3D convolu-
tion is applied in Iskakov et al. (2019) and Tu et al. (2020) to make
the inference directly from a volume which is aggregated by multi-
view 2D features. PSM and learning-based methods have disadvantages
in high computing and time consumption. Conventional triangulation
methods (Hartley and Zisserman, 2003) only utilize the observation
information and geometric constraints but ignore the skeletal prior.
Our work not only inherits the cost advantage of triangulation but also
injects anatomy prior to maintain the pose coherence.

Anatomy Prior Extraction. The prior extraction can be classified
s model-based and learning-based. Model-based methods rely on a
redefined model to interpret the body structure and utilize model
onstraints to represent the pose prior. Optimization fitting of the
odel generates a plausible pose. Zhou et al. (2016) uses the basis
ose as the dictionary to represent the pose prior. Bogo et al. (2016)
mploys the SMPL model to limit the result. Although the model
rings strong constraints, the iterative optimization used to solve the
ictionary weights or SMPL parameters is time-consuming. In contrast,
earning-based methods encode features to enhance joint correlations
r generate distribution to represent prior. GCN (Cai et al., 2019; Liu
t al., 2020; Zhao et al., 2019) and Attention (Guo et al., 2021) are
sed to capture the relationship between two joints. In Yang et al.
2022), Chen et al. (2019b) and Habibie et al. (2019), the encoder–
ecoder is applied to create the latent space which is used to mine the
nter-dependencies between joints. GAN (Tian et al., 2021; Wandt and
osenhahn, 2019; Chen et al., 2019a) and VAE (Pavlakos et al., 2019)
re another kind of model to capture the distribution of poses. Learning-
ased methods leverage the power of deep network to capture more
eneric constraints, but at the cost of more computing resources and
etwork complexity. In Malleson et al. (2020) and Romero et al. (2017),
CA is employed as a dimensionality-reduction method to acquire pose
rior. The linear and network independent properties of PCA attract us.
ence, we use PCA with skeletal structure features as input to learn the

elationships from near and distant joints.

. Methodology

The overview of the proposed method is depicted in Fig. 1. There
re three major modules: (1) 2D Keypoint Detector, to detect multi-
iew 2D joint locations respectively, where an off-the-shelf ResNet-152
ackbone (Xiao et al., 2018) is directly applied. (2) Multi-View Fusion
MVF), to refine 2D poses considering the view consistency. (3) Holistic
riangulation (HT), to reconstruct the final 3D pose by closed-form
ptimization.

The input to the whole framework is a set of multi-view RGB images
𝑐 , whose index is the number of the synchronized cameras and 𝑐 ∈
{1, 2,… , 𝐶}. The output is 3D pose 𝑌 = [𝐲𝑇1 , 𝐲

𝑇
2 ,… , 𝐲𝑇𝐾 ]

𝑇 ∈ R(3𝐾,1),
𝑇
where 𝐲𝑘 = [𝑥𝑘, 𝑦𝑘, 𝑧𝑘] and 𝐾 = 17. Each image will be fed into the 2D
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Fig. 2. The schematic diagram of (a) Linear Triangulation (LT) and (b) our Holistic Triangulation (HT) with anatomy constraints. There are two major differences between two
methods: (1) LT reconstructs 3D keypoints separately and concatenates all keypoints to a pose, while HT reconstructs an entire 3D pose at once. (2) LT only consider about the
geometric constraints, however, HT includes anatomy constraints extracted by PCA encoder–decoder.
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detector to generate the initial 2D pose 𝑋𝑐 = [𝐱𝑇(𝑐,1), 𝐱
𝑇
(𝑐,2),… , 𝐱𝑇(𝑐,𝐾)]

𝑇 ∈
R(2𝐾,1), where 𝐱𝑐,𝑘 = [𝑥(𝑐,𝑘), 𝑦(𝑐,𝑘)]𝑇 is the location of the 𝑘th joint
in view 𝑐. Then, the MVF module obtains the refined 2D poses 𝑋′

𝑐
from the initial ones by fusing all heatmaps corresponding to different
views. After that, HT reconstructs the 3D pose 𝑌 from the refined
2D poses through optimization. Finally, a loss function, takes multi-
view consistency and whole pose coherence into account, supervises
the network when end-to-end training.

In this section, we first introduce HT, since the goal of our task is
3D pose. Then, the MVF is introduced as an assistance to refine the 2D
results. Finally, the overall loss function of the end-to-end framework
will be present.

3.1. Holistic triangulation with anatomy constraints

LT (Hartley and Zisserman, 2003) is classic and elegant because of
the closed-form solution, but is lack of joint-by-joint relation modeling.
As depicted in Fig. 2(a), LT infers 3D position 𝐲𝑘 of each keypoint
separately for 𝐾 times, and the keypoints are then concatenated to gen-
erate the 3D pose. To fix this issue, we propose Holistic Triangulation
(HT), shown in Fig. 2(b), to reason the whole pose at once through
reprojection and reconstruction term:

min
𝑌

‖𝐴𝑌 + 𝐵‖ +H (1)

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐰1◦𝐴1 𝑂 ⋯ 𝑂
𝑂 𝐰2◦𝐴2 ⋯ 𝑂
⋮ ⋮ ⋮ ⋮
𝑂 𝑂 ⋯ 𝐰𝑘◦𝐴𝑘

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐵 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐰1◦𝐛1
𝐰2◦𝐛2

⋮
𝐰𝑘◦𝐛𝑘

⎤

⎥

⎥

⎥

⎥

⎦

where ◦ is the Hadamard product. 𝐴𝑘 ∈ R(2𝐶,3) is the first three columns
of 𝐴𝑘 and 𝐛𝑘 ∈ R(2𝐶,1) is the last column. 𝐴𝑘 is same as LT (refer
to supplementary). We draw the idea from Algebraic Triangulation
(AT) (Iskakov et al., 2019) to add the learnable confidence 𝐰𝑘 =
[𝜔1,𝑘, 𝜔1,𝑘,… , 𝜔𝐶,𝑘, 𝜔𝐶,𝑘]𝑇 to mitigate the impact of 2D positions with
low confidence.

However, owing to the blockwise linear independence in the repro-
jection term of Eq. (1), resulting vector of each block in 𝑌 has no dif-
ference from AT. To solve this problem, we introduce a reconstruction
term H.
Vanilla Reconstruction Term. The reconstruction term aims to en-
hance the blockwise linear dependence in 𝐴 and inject anatomy co-
herence to 𝑌 . PCA (Hotelling, 1933), a simple but effective module is
chosen to model the anatomy prior for three major reasons: (1) The
PCA low-dimension latent space is capable to extract the correlations
between different keypoints and factor out the generic pose global
 c

3

Fig. 3. Skeletal structure features.

context. The generality of the pose context is guaranteed by the fact
that training data contains various motions. And then we approach
the estimated pose 𝑌 close to the PCA recovered pose 𝑌 ′ from the
latent space, to inject the pose prior. (2) The linear property of PCA
will not change the closed-form solution superiority of HT, which will
not hinder end-to-end training. (3) PCA does not require additional
network training, making it a more computationally efficient choice.

Note that the training set of PCA is root-relative, 𝑌𝑟𝑒 = 𝑌 − 𝑌𝑟𝑜𝑜𝑡 ∈
(3𝐾,1). And 𝑌𝑟𝑜𝑜𝑡 is the pelvis position which is estimated by LT. By
dding a reconstruction term, the objective function is expressed as:

in
𝑌

‖𝐴𝑌 + 𝐵‖ + 𝜆‖𝑌𝑟𝑒 − 𝑌 ′
𝑟𝑒‖ (2)

here 𝑌 ′
𝑟𝑒 = 𝑀𝑇𝑀(𝑌𝑟𝑒−𝑌𝑚𝑒𝑎𝑛)+𝑌𝑚𝑒𝑎𝑛 is the recovered pose; 𝑀 ∈ R(𝐷,3𝐾)

s the feature extracting matrix of PCA encoder; 𝑌𝑚𝑒𝑎𝑛 ∈ R(3𝐾,1) is the
ean pose of PCA training set; and 𝜆 is a learnable weight of recon-

truction term. Because of the convexity of Eq. (2), the 3D pose can be
losed-form solved using Least-Square method (see supplementary for
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Fig. 4. The pipeline of MVF module. The reference view image provides the image features and initial heatmap while source views provide keypoint features. Matching heatmap
is generated through a matching layer by comparing keypoint features with image features. And it is multiplied by an epipolar mask to avoid mismatching. Finally we aggregate
initial heatmap of reference view and the pseudo heatmaps from source views to a fused heatmap.
w

proof):

(𝐴𝑇𝐴 + 𝜆𝑁𝑇𝑁)𝑌 = 𝜆𝑁𝑇𝑁(𝑌𝑟𝑜𝑜𝑡 + 𝑌𝑚𝑒𝑎𝑛) − 𝐴𝑇𝐵 (3)

where 𝑁 = 𝐼 −𝑀𝑇𝑀 ∈ R(3𝐾,3𝐾).
Skeletal Structure Feature Extraction Module. One inadequacy of
the basic reconstruction term above is that the prior extracted is
implicit. To address this, we transform the data from keypoint space
to skeletal structure space, enhancing associations between joints and
introducing explicit features.

To generate skeletal structure feature 𝑉 , KCS (Wandt et al., 2018), a
matrix multiplication algorithm to create vector between two selected
points, is used to transform joints to joint-connected vectors by a
mapping matrix 𝑇 ∈ R(3𝐽 ,3𝐾). And 𝐺 ∈ R(3𝐾,3𝐽 ) is applied to transform
back.

The feature of connected joint with 𝑠 hops is named as 𝑉𝑠. As shown
in Fig. 3, both keypoints and bone vectors can be compatible with 𝑉 _0
and 𝑉 _1. Because longer distances will result in fewer extracted vectors
with less information, only ℎ𝑜𝑝 = 0, 1, 2 is defined. By fusing different
𝑉 _𝑠 features, the objective function can be adapted to:

min
𝑌

‖𝐴𝑌 + 𝐵‖ +
𝑆
∑

𝑠=0
𝜆𝑠‖𝐺𝑠(𝑉𝑠 − 𝑉 ′

𝑠 )‖ (4)

where 𝐺𝑠 remaps the reconstructed error from feature space back to
keypoint space in order to keep two terms in the same dimension.
Replacing 𝑉 _𝑠 = 𝑇 _𝑠𝑌 , the solution is:

(𝐴𝑇𝐴 +
𝑆
∑

𝑠=0
𝜆𝑠𝐻

𝑇
𝑠 𝐻𝑠)𝑌 =

𝑆
∑

𝑠=0
𝜆𝑠𝐻

𝑇
𝑠 𝐻𝑠(𝑌𝑟𝑜𝑜𝑡 + 𝑌𝑚𝑒𝑎𝑛) − 𝐴𝑇𝐵 (5)

where 𝐻𝑠 = 𝐺𝑠𝑁𝑠𝑇𝑠 ∈ R(3𝐾,3𝐾), 𝐺_𝑠 and 𝑇 _𝑠 are mapping matrices of
𝑉 _𝑠 feature, 𝑁_𝑠 is similar to 𝑁 in Eq. (3) but is relative to different
feature 𝑉 _𝑠.

3.2. Multi-view fusion 2D keypoint refinement

The initial 2D keypoints achieved by 2D backbone detector are
independent from each view. To enhance the cross view correlations,
we introduce the MVF module. The pipeline of MVF is illustrated in
Fig. 4. To make the keypoints in the reference view consistent with
other views, the pseudo heatmaps corresponding to the same keypoints
in other views are generated. Concretely, the pseudo heatmap is the
product of matching heatmap and epipolar mask, and represents the
probability source view keypoint localizing in the reference view. After
that, the initial heatmap are fused with pseudo heatmaps through an
aggregation layer which is a 1 ∗ 1 convolution kernel to product the

refined fused heatmap. [

4

Matching Layer. The idea of cost volume in stereo matching meth-
ods (Kendall et al., 2017; Xu and Zhang, 2020) inspires us. The cor-
responding matching heatmaps 𝐻𝑚𝑎𝑡𝑐ℎ, which indicates the matching
degree of the keypoints 𝑝′ in the source view and all pixels 𝑝(𝑖, 𝑗) in the
reference view, is generated. The pixel gets higher matching score as
its features are better matched with 𝑝′. We also explore two types of
matching strategy:

• inner dot: 1
𝑁 (𝐹 (𝑖, 𝑗) ⋅ 𝐹 (𝑝′))

• fully connected layer: 𝐰𝑇 ⋅ 𝑐𝑎𝑡(𝐹 (𝑖, 𝑗), 𝐹 (𝑝′))

here 𝐹 represents the features generated by 2D backbone, 𝐹 (𝑝′)
is the sampled feature of 𝑝′ via bilinear interpolation, 𝑐𝑎𝑡() means
concatenation and 𝐰 is the learnable parameters.
Epipolar Layer. In stereo matching task, only the points in the hor-
izontal direction will be compared because the given image pair are
rectified. However, in matching layer, the 𝑝′ is compared with all
pixels in the reference view due to lack of rectification. The matching
instability will be caused by the similar feature vectors of wrong pixels.
To solve the problem, we generate the epipolar mask by the epipolar
field (Ma et al., 2021) to limit the matching pixels locating near the
epipolar line of 𝑝′. The epipolar field indicates the probability pixels
𝑝(𝑖, 𝑗) in the reference view lies in the epipolar line of 𝑝′:

𝐸(𝑝, 𝑝′) = (1 − |(⃖⃖⃖⃖⃖⃖⃗𝑐′𝑝′ × ⃖⃖⃖⃖⃗𝑐𝑐′) ⋅ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑐𝑝(𝑖, 𝑗)|)𝛾 (6)

where 𝑐, 𝑐′ are camera centers and 𝛾 is the soft factor to control the
epipolar field margin. The field gets narrower as 𝛾 gets bigger, 𝛾 = 10
is chosen empirically to generate epipolar mask.

3.3. Loss

The overall loss function consists of four parts: (1) Mean Square Er-
ror (MSE) between estimated 3D pose and groundtruth, (2) reprojected
error: L2 loss of reprojected 2D pose and estimated 2D pose, (3) bone
length loss: L1 loss of estimated bone vector and groundtruth and (4)
joint angle loss of 3D poses:

𝐿(𝑌 ) = 𝐿𝑀𝑆𝐸 (𝑌 , 𝑌 ) + 𝛽𝑝𝑗𝐿𝑝𝑗 (𝑋′, 𝑌 ) + 𝛽𝑏𝑙𝐿𝑏𝑙(𝑌 , 𝑌 ) + 𝛽𝑗𝑎𝐿𝑗𝑎(𝑌 ) (7)

where 𝑌 is the groundtruth of the pose; 𝛽𝑝𝑗 , 𝛽𝑏𝑙 and 𝛽𝑗𝑎 are set to 0.1,
0.01, 0.01 separately by empirical results. Based on the common 𝐿𝑀𝑆𝐸 ,
we subjoin the 𝐿𝑝𝑗 to enhance the multi-view consistency and 𝐿𝑏𝑙 , 𝐿𝑗𝑎
to promote the anatomy coherence.
Joint Angle Loss. The multivariate Gaussian Mixture Model (Reynolds
et al., 2009) is used to model joint angle distribution 𝑝(𝑥𝑘), 𝑥𝑘 =
sin 𝜃 , sin𝜑 , cos𝜑 ]𝑇 , and 𝜑 , 𝜃 are azimuth and polar angle of joint
𝑘 𝑘 𝑘 𝑘 𝑘



X. Wan, Z. Chen and X. Zhao Computer Vision and Image Understanding 236 (2023) 103830

𝑝
S

w
a
n
m
t

𝑃

P
t

𝑃

4

o
e
I
a
i
f

in a local spherical coordinate system (Akhter and Black, 2015) (details
in suppl.). And the joint angles with low probability are penalized:

𝐿𝑗𝑎 =
1
𝐾𝑠𝑒

𝐾𝑠𝑒
∑

𝑘=0
𝑠𝑖𝑔𝑚𝑜𝑖𝑑

((

𝑝(𝑥𝑘) −
𝑎
2

)

∗ (−10
𝑎
)
)

(8)

where 𝐾𝑠𝑒 is the number of selected joints; 𝑎 is probability border
(𝑥𝑘 ± 3𝜎), the angle with the probability (0, 𝑎) should be penalized.
o transformation − 𝑎

2 , coefficient 10
𝑎 are used to offset (0, 𝑎) to (5,−5)

to suit the variable domain of sigmoid.

4. Experiments

4.1. Datasets and evaluate metrics

Human3.6M Dataset. The Human3.6M (Ionescu et al., 2013) is one of
the most universal 3D HPE dataset with 3.6 million annotations. The
videos are acquired from 4 synchronized cameras in laboratory. We use
Joint Detection Rate (JDR) to evaluate 2D pose, Mean Per Joint Position
Error (MPJPE) to evaluate relative 3D pose and Percentage of Plausible
Pose (PPP), elaborated in Section 4.2, to assess plausibility.
Total Capture Dataset. The Total Capture Dataset (Trumble et al.,
2017) is a common dataset recorded by 8 cameras which are distributed
over different pitch angles from top to bottom. The dataset contains
various actions, including some challenging motions like crawling and
yoga. Hence, cross-dataset experiments are executed on it to evaluate
the generalization.

4.2. Plausible-pose evaluation metric

Plausible-Pose Protocol. A plausible pose should meet two require-
ments: all bones have appropriate length and all joints are flexed in a
limited range. A suitable bone length should be as near as possible to
the groundtruth, and a reasonable joint angle is located in an occupancy
matrix 𝑂𝐶(𝜃, 𝜑) which indicates whether the angle pair (𝜃, 𝜑) appears
in the training set:

𝑃𝑏𝑙(𝐵𝐿) =

{

1, |

𝐵𝐿
𝐵𝐿

− 1| < 𝑅
0, 𝑜𝑡ℎ𝑒𝑟𝑠

, 𝑃𝑗𝑎(𝜃, 𝜑) =
{

1, 𝑂𝐶(𝜃, 𝜑) = 1
0, 𝑜𝑡ℎ𝑒𝑟𝑠

(9)

here 𝐵𝐿 is predicted bone length, 𝐵𝐿 is bone length groundtruth
nd 𝑅 is bone length proportion threshold. The morphology tech-
ique (Gonzales and Wintz, 1987) is used to smooth the occupancy
atrix 𝑂𝐶, so that the continuous feasibility space can be covered even

hough the (𝜃, 𝜑) is discrete. Ultimately, a reasonable pose is:

𝑝(𝑌 ) =
𝐽
∏

𝑗=0
𝑃𝑏𝑙(𝐵𝐿𝑗 )

𝐾𝑠𝑒
∏

𝑘=0
𝑃𝑗𝑎(𝜃𝑘, 𝜑𝑘) (10)

lausible-Pose Metric. To evaluate the plausibility performance sta-
istically in testing dataset, a new metric PPP is defined as:

𝑃𝑃 = 1
𝑇

𝑇
∑

𝑡=1
𝑃𝑝(𝑌𝑡) (11)

where 𝑇 is the number of testing samples, and the metric is divided
according to the bone length threshold into PPP@𝑅.

.3. Comparison with state-of-the-art methods

We compare quantitative and qualitative performance with the state
f the art using all views on Human3.6M, and conduct cross-dataset
xperiments on Total Capture.
mplementation Details. The 2D keypoint detection backbone is same
s AT (Iskakov et al., 2019), to ensure that the performance is not
nfluenced by differences in the 2D backbone. The low-dimension
eature extraction matrix 𝑀 and mean pose 𝑌 of PCA are both
𝑚𝑒𝑎𝑛

5

generated by an augmented training set to cover a diverse range of
pose distribution. The dataset consists of Human3.6M (Ionescu et al.,
2013) and MPII-INF-3DHP (Mehta et al., 2017) which is a large dataset
with over 1.3 million frames of samples. In order to avoid the influence
of orientations diversity, the orientation normalization is applied in the
training data. It should be clarified that hyperparameters and feature
extraction strategies are determined by ablation study (refer to supple-
mentary): the feature 𝑉 _0, 𝑉 _1, 𝑉 _2 are fused and the corresponding
PCA reserved dimension 𝐷 are set to 25, 20, 15 respectively; and
coefficient of reconstruction term 𝜆 are learnable with initial value
8000, 4000, 4000. To train the MVF module and the whole network,
we only utilize Human3.6M or Total Capture (Trumble et al., 2017).
Firstly, We train the MVF network with MSE loss of 2D keypoints for
2 epochs with a batch size of 12. The learning rate is initially set to
10−2 and decays every 25 000 iterations by a factor of 0.1. After that,
the whole network which combines three modules are trained for 4
epochs with 10−4 learning rate under the supervision of loss function
in Section 3.3. If not mentioned explicitly, the baseline is AT (Iskakov
et al., 2019) method.
Quantitative Results on Human3.6M. We first evaluate the refined
2D results after MVF refinement module. Following convention, the
threshold of JDR is set to the half of the head size. As shown in
Table 1, MVF outperforms CrossView by at least 2.1% regardless of
the matching strategy. And fcl MVF also surpass Epipolar Transformer.
The improvement demonstrates that the initial keypoint location can be
leveraged to generate reliable pseudo heatmap with fewer calculations.

To evaluate the 3D pose estimation, we first compare precision
performance with state-of-the-art methods whose input of 2D–3D step
is only 2D keypoint locations. In addition to the whole framework,
two networks are trained separately: (1) only MVF, uses MSE loss and
reprojected loss to supervise, (2) only HT, supervised by MSE loss,
bone length loss and joint angle loss. The PCA matrices were trained
using two strategies: (1) only Human3.6M, and (2) augmented training
data that combines orientation-normalized Human3.6M and MPII-INF-
3DHP. With data augmentation, the HT module performs better for
all types of actions, demonstrating the importance of pose diversity.
Both proposed modules achieves average MPJPE of 21.6 mm, surpassing
AT by 1 mm (relative 4.4%). The improvement demonstrates that
view consistency and anatomy coherence are both meaningful for pose
estimation. As Table 2 shows, the method combined with two modules
achieves the state-of-the-art results, with 21.1 mm MPJPE, 6.6% better
than AT. The performance is improved on almost all actions.

We also compare our approach with other methods whose input
of 2D–3D reconstruction is heatmap or intermediate feature which
contains more infromation than keypoint location. As shown in Table 3,
our method achieves a balance of implementation complexity (calcu-
lated by thop1), consuming time and accuracy performance. MVF-HT
surpasses AT in both precision and plausibility with 6.6% and 2.4%.
Even though Volumetric Triangulation (VT) (Iskakov et al., 2019)
surpasses us with 0.3 mm MPJPE and 0.17% PPP@0.2, the MVF-HT
almost outperforms it by 145 billion in the number of operations and
48 ms in time costing. In 3D reconstruction procedure, VT utilizes 2D
features as input and 3D CNN as inference network, which considers
more information and is more complicate.
Qualitative Results on Human3.6M. To evaluate the multi-view con-
sistency performance of MVF, the estimated, reprojected and
groundtruth 2D keypoints are compared. The estimated 2D keypoint
will be close to the reprojected keypoint from 3D result if the key-
point is consistent with other views. As illustrated in Fig. 5, the blue
(reprojected) and green (estimated) points are generally closer after
MVF refinement, especially for some self-occlusion. The improvement
suggests that the MVF module can make views perceive others and
provide assistant for some unseen view from other seen views.

1 https://github.com/Lyken17/pytorch-OpCounter.

https://github.com/Lyken17/pytorch-OpCounter
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Table 1
Comparison with state-of-the-art methods on Human3.6M in terms of 2D pose estimation accuracy metric JDR (%). ‘‘dot’’
means using inner dot matching strategy and ‘‘fcl’’ represents fully connected layer.
Method shlder elb wri hip knee ankle root belly neck nose head Avg.

CrossView (Qiu et al., 2019) 95.6 95.0 93.7 96.6 95.5 92.8 96.7 96.4 96.5 96.4 96.2 95.9
Epipolar (He et al., 2020) 97.7 97.3 94.9 99.8 98.3 97.6 99.9 99.9 99.8 99.7 99.5 98.3
Ours-dot 96.4 96.8 99.8 97.2 98.3 99.5 97.3 99.7 99.8 99.6 93.7 98.0
Ours-fcl 97.8 97.5 99.8 97.7 98.7 99.6 97.8 99.7 99.8 99.8 95.4 98.5
Table 2
Comparison with state-of-the-art methods on Human3.6M in terms of MPJPE, where the input of 2D–3D step is 2D locations. T. is short for triangulation, and DA is short for data
augmentation.

MPJPE (mm) Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Canonical (Remelli et al., 2020) 27.3 32.1 25.0 26.5 29.3 35.4 28.8 31.6 36.4 31.7 31.2 29.9 26.9 33.7 30.4 30.2
CrossView-T. (Qiu et al., 2019) 25.2 27.9 24.3 25.5 26.2 23.7 25.7 29.7 40.5 28.6 32.8 26.8 26.0 28.6 25.0 27.9
Epipolar-T. (He et al., 2020) 29.0 30.6 27.4 26.4 31.0 31.8 26.4 28.7 34.2 42.6 32.4 29.3 27.0 29.3 25.9 30.4
Algebraic-T. (Iskakov et al., 2019) 20.4 22.6 20.5 19.7 22.1 20.6 19.5 23.0 25.8 33.0 23.0 21.6 20.7 23.7 21.3 22.6
Ours-MVF 20.1 21.5 20.0 18.7 21.3 20.3 18.4 21.9 24.3 30.6 22.1 20.4 19.6 23.4 20.2 21.6
Ours-HT w/ DA 19.4 21.5 20.0 18.7 21.6 20.9 18.2 21.5 24.8 31.7 21.7 20.2 18.9 23.2 19.6 21.6
Ours-HT w/o DA 19.9 21.6 20.3 19.2 21.6 21.3 18.6 21.7 25.5 30.5 22.0 20.2 19.6 23.4 20.5 21.8
Ours 19.5 20.9 19.5 18.3 21.1 20.0 17.9 21.3 23.9 30.1 21.6 19.9 18.9 22.8 19.5 21.1
Table 3
Comparison of MPJPE, inference time, computation complexity and PPP@0.2 on Human3.6M. MACs and param are shorthand of the number
of multiply-add operations and parameters.
Method Input Complexity MPJPE (mm) Time (ms) PPP@0.2 (%)

Feature Heatmap Keypoint Param MACs

CrossView-RPSM (Qiu
et al., 2019)

✓ 570M 212B 26.2 1.88 × 103 –

Epipolar-RPSM (He et al.,
2020)

✓ 78M 205B 26.9 1.88 × 103 68.54

Algebraic-T. (Iskakov
et al., 2019)

✓ 79M 210B 22.6 75 79.36

Volumetric-T. (Iskakov
et al., 2019)

✓ 80M 359B 20.8 152 81.41

Ours ✓ 79M 214B 21.1 104 81.24
Table 4
Comparison with the state of the art on Total Capture in terms of MPJPE.

MPJPE (mm) Subject 1, 2, 3 Subject 4, 5 Avg.

W2 FS3 A3 W2 FS3 A3

IMUPVHa (Trumble et al., 2017) 30 91 49 36 112 10 70
AutoEnca (Trumble et al., 2018) 13 49 24 22 71 40 35
CrossViewa (Qiu et al., 2019) 19 28 21 32 54 33 29
GeoFusea (Zhang et al., 2020) 14 26 18 24 49 28 25
Baseline 64 60 53 72 78 62 63
Ours 45 49 45 52 64 57 51
Oursa 13 24 17 23 41 29 23

a Methods are trained on the Total Capture.
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Furthermore, qualitative experiments are used to evaluate the abil-
ty to amend the implausible pose of HT approach. As illustrated in
ig. 6, the extracted anatomy prior can amend some unreasonable
rrors. It is particularly noteworthy that HT has the capability to correct
he pose to have normal joint angles and bone lengths in such a tough
ituation.
eneralization to the Total Capture Dataset. To substantiate gen-
ralization of our model, we first conduct cross-dataset experiments on
otal Capture, the testing model is only trained by Human3.6M training
et. As shown in Table 4, our method surpasses baseline by 12 mm

(19%), which demonstrates the generalization of our method. Then
we train our model with Total Capture training data under the same
strategy clarified in Section 4.3. Our method achieves 23 mm MPJPE,
which also exceeds GeoFuse (Zhang et al., 2020) by 8% and (Trumble
et al., 2018) by 34%. It is worth noting that, the PCA training set does
not contain the Total Capture, which demonstrates that our anatomy
coherence has the ability to deal with unseen gestures.
 u

6

4.4. Ablation study

All ablation studies are conducted on the Human3.6M. Both MPJPE
and PPP@0.2 metrics are used for evaluation.
T Module Design. To determine the hyperparameters, HT is only

used as a post-processing step, replacing the baseline triangulation.
We compare different choices of low-dimension 𝐷 preserved by PCA.
As the dimension decreases, less variance is kept, which means lower
precision but higher abstraction. As shown in Table 5, the 𝐷 of 𝑉 _0
eature is changed from 35 to 10 with stride 5, which corresponds
o preserving variance from 99.9% to 88.3%. As 𝐷 decreases, both
recision MPJPE and PPP get improved, and peaks at 𝐷 = 25 (99.5%
ariances) where a balance is struck in prior extraction and precision
reservation. Compared with baseline, the improvement demonstrates
he importance of PCA reconstruction term, implying that the pose
lobal context is extracted.
VF Module Evaluation. Beside the matching strategy, we also eval-

ate the number of views when fusing, there are two pipelines: (1) all
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Fig. 5. Visualization of the 2D keypoints with and without MVF refinement. We use
different colors to distinguish different types of 2D results, where red: groundtruth,
green: estimates, blue: reprojected results from 3D reconstruction. As reprojected
results get closer to estimates, the different view keypoints are more consistent. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

view fusion, each view generates pseudo heatmap assist to other views,
(2) most-conf fusion, only most-confident view is chosen to generate
pseudo heatmap. The comparison is shown in Table 6, fully connected
layer slightly outperforms the inner dot matching. Moreover, all view
fusion performs better. We conjecture that since most initial results
are reliable, as the number of fused views increases, more accurate
auxiliary information is provided.
Effect of Loss. As shown in Table 7, PJ loss brings 2.1% relative
MPJPE improvement, which is more than bone length loss and joint
angle loss. We suppose it is because that view consistency enhance
correspondence of multi-view 2D keypoints. But the plausibility raises
little with PJ loss. BL loss and JA loss bring more improvement in
PPP@0.2. It demonstrates that the kinematic skeleton structure can
oost the plausibility of pose. Finally we retrain the network which
ombines all loss function, and obtain the results whose MPJPE is
1.89 mm and PPP@0.2 is 79.7%.
ffect of the Number of Views. Views are reduced from 4 to 2 during
esting to explore influence of the number of views. As the number
f views decreases, precision degrades. But MPJPE equals to 29.99 mm

when there are two views as shown in Table 8, which is still excellent.
By comparing ours with ours-HT or ours-MVF, the conclusion that both
view consistency and anatomy coherence can improve pose estimation
is proved.
Effect of Orientation Normalization. Whether and what the anatomy
coherence PCA factors out still bother us. To observe it, we change each
latent variable individually with a small step to generate the recovered
3D pose. The changes in 3D poses represents the physical meaning of
the corresponding latent variable. Without orientation normalization,
there are only 8 out of 25 latent variables describe joint correlations in
motion, and the remaining 17 describe rotation invariant property. The
results have been improved after orientation normalization, where 25
variables all describe the joint-coupled motion. And the transformation
of the recovered 3D poses demonstrate the capability of PCA to restrict
joints correlation through motion.
7

Table 5
Low dimension preserved design comparison. We refer to baseline as 𝐷 = 51 whose
imension is not reduced.
Dimension 𝐷 51 35 30 25 20 15 10

MPJPE- (mm) 22.60 22.10 22.04 22.04 22.06 22.08 22.11
PPP@0.2 (%) 79.36 79.90 79.91 80.97 80.14 80.19 80.33

Table 6
Effect of matching strategy in MVF. First row is baseline.

Matching strategy View MPJPE (mm)

dot fcl most-conf all

22.60

✓ ✓ 22.05
✓ ✓ 21.88

✓ ✓ 21.92
✓ ✓ 21.61

Table 7
Effect of loss strategy. PJ: reprojected loss, BL: bone length loss, JA: joint angle loss.

Strategy MPJPE (mm) PPP@0.2 (%)

PJ BL JA

22.60 79.36

✓ 22.12 79.37
✓ 22.23 79.55

✓ 22.40 79.43

✓ ✓ 22.10 79.68
✓ ✓ ✓ 21.89 79.70

Table 8
Effect of the number of views during testing in terms of MPJPE. When combined
with MVF, the case of using three views is not tested because it takes a long time to
train.
#(views) MPJPE (mm)

Baseline Ours-HT Ours-MVF Ours

4 22.60 21.58 21.61 21.12
3 27.08 26.11 25.54 24.83
2 33.43 31.83 30.74 29.99

4.5. Limitations

Our method has some limitations that need improvement. Firstly,
the low-dimensional subspace spanned by PCA aims to represent the
anatomy pose prior across the entire motion space. However, de-
spite combining Human 3.6M (Ionescu et al., 2013) and MPII-INF-
3DHP (Mehta et al., 2017) datasets to enhance pose diversity, the
prior obtained through PCA struggles to handle freestyle actions with
unseen poses (FS, Table 4). Expanding the datasets alone may not be
enough to overcome the generalization limitations for unseen motions.
Secondly, our network structure is not adaptable to different view num-
bers, requiring retraining when the view number changes. In addition,
the reduction in the number of view can lead to a lack of diverse
observations, making the model more susceptible to errors caused by
outliers or incorrect initial predictions. The interdependence between
views amplifies the impact of inaccuracies in one view on the overall
performance.

5. Conclusion

We propose view consistency aware holistic triangulation to im-
prove the performance of both precision and plausibility in 3D HPE.
The key contribution is that the geometric correspondences of multi-
view 2D keypoints are enhanced and anatomy coherence is injected
to 2D–3D process. Meanwhile, a PPP metric is raised to evaluate
the pose plausibility. Experiments not only exhibit that our approach
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Fig. 6. Visualization of estimated 3D poses. Different colors are used to distinguish whether the pose is reasonable or not, where yellow represents unreasonable and green is
reasonable. HT can amend the unreasonable poses. For example, in the first column of the first row, the pose generated by AT (baseline method, w/o reconstruction term) has a
too long right leg (red side) and an unreasonable left knee angle (blue side), which is corrected by HT. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
outperforms state-of-the-art methods, but also demonstrate that the re-
construction term with extracted skeletal structure features can abstract
the human anatomy prior.
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